Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Shi-Jun Li and Jian-Hua Zhong*

Department of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China

Correspondence e-mail:
chemzhong@gmail.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.054$
$w R$ factor $=0.106$
Data-to-parameter ratio $=17.3$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
4-Nitrobenzyl 3-oxo-2-(triphenylphosphoranylidene)butanoate

Colorless crystals of the title compound, $\mathrm{C}_{29} \mathrm{H}_{24} \mathrm{NO}_{5} \mathrm{P}$, were synthesized by the reaction of triphenylphosphine, an iron porphyrin complex and 4-nitrobenzyl 2-diazo-3-oxobutanoate at 353 K . All bond distances and angles are within normal ranges and there are no notable interactions between neighboring molecules.

Comment

Ylides are useful for the extension of carbon chains by incorporating double bonds into molecules (Meshram et al., 1998; Castaneda et al., 2003). Ylides can also be converted into many other functional groups, such as ketones, carboxylic esters and aldehydes. In particular, triphenylphosphonium ylides are popular because of their easy preparation and stability. A new and efficient method for the selective olefination of aldehydes and ketones with a diazo group involves catalysis by metalloporphyrins (Mirafzal et al., 2002; Chen et al., 2003; Lee et al., 2003), but the mechanism was not verified. We have captured an intermediate using an acyl-stabilized diazo compound as the starting material. We report here the crystal structure of the intermediate, viz. the title compound, (I).

(I)

Selected bond distances and angles are listed in Table 1. The compound crystallizes in the monoclinic space group $C 2 / c$ with one molecule in the asymmetric unit. The molecular structure is shown in Fig. 1. There are no notable interactions between molecules.

Experimental

Triphenylphosphine ($262 \mathrm{mg}, 1.0 \mathrm{mmol}$) and $\mathrm{Fe}(\mathrm{TPP}) \mathrm{Cl}(6 \mathrm{mg}$, $0.01 \mathrm{mmol})($ TTP $=$ meso-tetrakisphenylporphyrin $)$ were dissolved in

Received 22 December 2005
Accepted 11 January 2006
toluene $(10 \mathrm{ml})$ in a round-bottomed flask, and a solution of 4nitrobenzyl 2-diazo-3-oxobutanoate ($263 \mathrm{mg}, 1.0 \mathrm{mmol}$) in toluene (3 ml) was then added dropwise with vigorous stirring; the mixture was further heated to 353 K . After 24 h , the reaction mixture was cooled to room temperature and the solvent was removed in vacuo. The residue was then purified by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, 3:1 hexane/EtOAc) to give the desired product (yield 82%). Colorless crystals were obtained by slow evaporation of an ethyl acetate solution over a period of $6 \mathrm{~d} .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.04(d$, $2 \mathrm{H}), 7.62(m, 6 \mathrm{H}), 7.50(m, 3 \mathrm{H}), 7.40(m, 6 \mathrm{H}), 7.0(d, 2 \mathrm{H}), 4.80(s, 2 \mathrm{H})$, $2.48(s, 3 H) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): $\delta 195.9,167.6,147.4,144.7$, 133.3, 131.9, 128.8, 128.4, 127.0, 126.2, 123.5, 63.3, 29.8. ESI-MS: 498.0 $\left(M^{+} \mathrm{H}\right), 520.0\left(M^{+} \mathrm{Na}\right)$.

Crystal data
$\mathrm{C}_{29} \mathrm{H}_{24} \mathrm{NO}_{5} \mathrm{P}$
$M_{r}=497.46$
Monoclinic, $C 2 / c$
$a=39.826(3) \AA$
$b=8.1857(6) \AA$
$c=15.1786(10) \AA$
$\beta=93.928(10)^{\circ}$
$V=4936.6(6) \AA^{3}$
$Z=8$
$D_{x}=1.339 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 15308
\quad reflections
$\theta=6.2-55.1^{\circ}$
$\mu=0.15 \mathrm{~mm}^{-1}$
$T=293(2) \mathrm{K}$
Block, colorless
$0.3 \times 0.1 \times 0.1 \mathrm{~mm}$

Data collection

Rigaku R-AXIS RAPID	5612 independent reflections
\quad diffractometer	3278 reflections with $I>2 \sigma(I)$
ω scans	$R_{\text {int }}=0.067$
Absorption correction: multi-scan	$\theta_{\max }=27.5^{\circ}$
$(A B S C O R ;$ Higashi, 1995)	$h=-51 \rightarrow 49$
$T_{\min }=0.955, T_{\max }=0.985$	$k=-10 \rightarrow 9$
22380 measured reflections	$l=-19 \rightarrow 19$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.054$
$w R\left(F^{2}\right)=0.107$
$S=1.06$
5612 reflections
325 parameters
H-atom parameters constrained

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0028 P)^{2} \\
&+8.1979 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.24 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.33 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left({ }_{\mathrm{A}},{ }^{\circ}\right)$.

P1-C9	$1.740(2)$	O3-C8	$1.364(3)$
P1-C12	$1.803(2)$	O3-C7	$1.434(3)$
P1-C24	$1.807(3)$	O4-C8	$1.213(3)$
P1-C18	$1.814(2)$	O5-C10	$1.244(3)$
C9-P1-C12	$115.0(1)$	C10-C9-P1	$111.4(2)$
C9-P1-C24	$108.2(1)$	C8-C9-P1	$120.6(2)$
C12-P1-C24	$109.9(1)$	O5-C10-C 9	$118.6(2)$
C9-P1-C18	$113.7(1)$	O5-C10-C11	$118.6(2)$
C12-P1-C18	$103.7(1)$	C17-C12-P1	$119.2(2)$
C24-P1-C18	$106.0(1)$	C13-C12-P1	$121.2(2)$
C8-O3-C7	$115.9(2)$	C23-C18-P1	$121.4(2)$
O3-C7-C4	$108.9(2)$	C19-C18-P1	$119.7(2)$
O4-C8-O3	$120.1(2)$	C25-C24-P1	$122.9(2)$
O4-C8-C9	$126.1(2)$	C29-C24-P1	$117.4(2)$
O3-C8-C9	$113.8(2)$		

Figure 1
A perspective view of the molecular structure of (I). Displacement ellipsoids are drawn at the 25% probability level.

All H atoms were positioned geometrically $(\mathrm{C}-\mathrm{H}=0.93-0.96 \AA)$ and refined as riding, with $U_{\text {iso }}(\mathrm{H})=1.2$ or 1.5 times $U_{\text {eq }}(\mathrm{C})$.

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/ MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXL97; software used to prepare material for publication: CrystalStructure and PLATON (Spek, 2003).

The authors thank the National Natural Science Foundation of China (No. 20272051) and the Teaching and Research Award Program for Outstanding Young Teachers in Higher Education Institutions of MOE, People's Republic of China.

References

Castaneda, F., Terraza, C. A., Bunton, C. A., Gillitt, N. D. \& Garland, M. T. (2003). Phosphorus, Sulfur Silicon Relat. Elem. 178, 1973-1985.

Chen, Y., Huang, L., Ranade, M. A. \& Zhang, X. P. (2003). J. Org. Chem. 68, 3714-3717.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Lee, M. Y. Chen, Y. \& Zhang, X. P. (2003). Organometallics, 22, 4905-4909.
Meshram, H. M., Reddy, G. S., Reddy, M. M. \& Yadav, J. S. (1998). Tetrahedron Lett. 39, 4107-4110.
Mirafzal, G. A., Cheng, G. \& Woo, L. K. (2002). J. Am. Chem. Soc. 124, 176177.

Rigaku (1998). PROCESS-AUTO. Version 1.06. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2004). CrystalStructure. Version 3.6.0. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

[^0]: © 2006 International Union of Crystallography All rights reserved

